
Scaffolded Projects for the Social Good:
A Strategy for Deploying Studio Model in CS Education

Stan Kurkovsky
kurkovsky@ccsu.edu

Central Connecticut State University
USA

Mikey Goldweber
mikeyg@denison.edu
Denison University

USA

Nathan Sommer
sommern1@xavier.edu

Xavier University
USA

Chad A. Williams
cwilliams@ccsu.edu

Central Connecticut State University
USA

ABSTRACT
Scaffolded Projects for the Social Good (SPSG) is an adaptable
service-learning framework with a low adoption threshold based
on the studio model. Its goal is to enable instructors to easily embed
externally sourced projects supporting Computing for the Social
Good (CSG) concepts into existing software engineering or similar
courses and addresses the barriers common to service learning, as
well as other frameworks with similar CSG-related objectives. Es-
tablishing connections between computing and its societal benefits
has proven to be an effective strategy for attracting students, es-
pecially those from underrepresented groups within the discipline.
Furthermore, this work supports competency-based learning by
offering students an opportunity to solve real-world problems in
an authentic environment using current industrial practices and
tools coupled with strong mentoring support from volunteer pro-
fessionals and near-peers. Using a studio model helps overcome the
timing impedance between the length of a single academic term
and the timeframes required to complete real-world projects with
student teams.
ACM Reference Format:
Stan Kurkovsky, Mikey Goldweber, Nathan Sommer, and Chad A. Williams.
2024. Scaffolded Projects for the Social Good: A Strategy for Deploying
Studio Model in CS Education. In Proceedings of the 55th ACM Technical
Symposium on Computer Science Education V. 2 (SIGCSE 2024), March 20–
23, 2024, Portland, OR, USA. ACM, New York, NY, USA, 2 pages. https:
//doi.org/10.1145/3626253.3635487

1 THE SPSG FRAMEWORK
Rationale: The concept of a software studio is based on the idea
that a CS degree does not prepare a graduate to be a great software
engineer any more than a degree in Arts prepares one to be a great
artist. However, repeated practice under the guidance of experi-
enced mentors within a studio framework can help develop student
competencies to a significantly higher level [1]. The concept of
a software studio has been successfully applied at both graduate

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGCSE 2024, March 20–23, 2024, Portland, OR, USA
© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0424-6/24/03
https://doi.org/10.1145/3626253.3635487

[3, 4] and undergraduate levels [5, 6]. Current literature suggests
that participating in software studio projects offers multiple advan-
tages to students. These include fostering a heightened sense of
ownership, which arises from the extended project duration and
real-world application. Student learning is improved through men-
toring by professionals, and students become more adept at using
professional practices and tools. Additionally, these projects im-
prove project outcomes through customer involvement and support
reflective practices through retrospectives and peer feedback.

Implementing a studio-based approach to software projects is
challenging. Setting up a logistical infrastructure requires a sig-
nificant investment of faculty effort to create a project workflow
that would fit their course or program needs. One of the primary
challenges is that students participate in the studio projects for
fixed periods of time (1, 2, or even 3 terms), while projects exist
in the studio as long as needed. While some large institutions can
provide staff and other resources to support such projects, this may
be unrealistic for many teaching-focused institutions. There must
be an established procedure for evaluating the project scope, which
often relies on an internalized process involving program faculty,
staff, and well-established partners sponsoring the projects. Each
institution’s studio approach is tightly integrated with the program
curriculum and the institutional context, which could make this
experience very difficult to adopt elsewhere.

The authors have accumulated a broad spectrum of experience
working with various studio-based approaches for a wide variety
of partners in over 75 projects. This experience has illuminated
the challenges involved in such projects such as the difficulties of
scaling the approach to large class sizes, identifying projects of an
appropriate size, addressing project maintenance, and coordinating
project handoff. Over time, these projects helped form a highly scaf-
folded framework that provided enough structure to ensure project
success while also being flexible, so teams had sufficient agility for
adapting to evolving requirements or emerging challenges.

Work Done: The authors are currently developing an easy-to-
adopt framework to deploy studio-based projects, which is based on
agile principles and the lessons learned from the HFOSS initiative
[2]. It will provide instructors with a customizable set of curricular
materials aimed to streamline the software project workflow and of-
fer ample mechanisms for formative and summative assessment of
student learning. Students participating in SPSG projects will gain

https://doi.org/10.1145/3626253.3635487
https://doi.org/10.1145/3626253.3635487
https://doi.org/10.1145/3626253.3635487


SIGCSE 2024, March 20–23, 2024, Portland, OR, USA Stan Kurkovsky, Mikey Goldweber, Nathan Sommer, & Chad A. Williams

the experience of applying their knowledge and skills in an authen-
tic project environment, preparing them to tackle the challenges
of real-world projects. SPSG will help students make meaningful
contributions to the missions of non-profit and community organi-
zations while providing concrete examples regarding the impact of
computing on society. SPSG will also make it easier for instructors
to engage with external software project partners by providing a
project feasibility assessment model.

Our current implementation of the SPSG framework builds on
top of one or two upper-level courses commonly found in many
programs: Software Engineering (SE) and Senior Project (SP). The
SE course typically combines software engineering fundamentals
with a semester-long course project. The SP course focuses pri-
marily on the project and is often supplemented by readings and
discussions emphasizing professional and ethical issues. A typical
SPSG studio project can last 2 to 3 semesters. Students in both SE
and SP courses can form teams working on a variety of projects for
different customers. After the first semester, students who worked
on a given project in SE, continue into SP and work with new SE
student teams ensuring project continuity and knowledge transfer.
Other options for project continuity are described below.

The Framework: Our framework uses a studio-based project
organization that is grounded in agile practices by focusing on short
iterations, partner (customer) involvement, and providing enough
flexibility to address changing requirements and other challenges.
Each course project consists of four phases: inception, elaboration,
development, and transition. The inception phase occurs before the
project commences and involves several key elements. During this
phase, the instructor collaborates with the project partner to assess
project feasibility, align it with the capabilities of student teams,
define project scope and duration, and establish expected outcomes.
This results in a standardized project proposal document, which is
then received by one or more student teams.

During elaboration, students (or the instructor) form teams and
work closely with the project sponsor to understand and formulate
project requirements. For new projects, teams go through several it-
erations of project partner interviews to form outline requirements,
which then are translated into user stories forming the initial prod-
uct backlog. For continuing projects, remaining user stories are
reviewed and adjusted taking into account any new user stories
reflecting the next set of requirements. Teams work closely with the
project partner to verify that the user stories correctly reflect the
desired functionality, while the partner sets user story priorities.

The development phase is structured using the agile methodol-
ogy. Each two-week sprint starts with the team planning their work
by identifying which user stories will be moved from the product
backlog into the sprint backlog. Given that a student might dedicate
no more than 10 hours per week to the project, instead of daily
scrum meetings, students participate in a weekly scrum during one
of the regularly scheduled class meetings. During a weekly scrum,
each team briefly discusses their progress made during the past
week towards meeting the sprint goal, as well as the plan for the
upcoming week. Throughout the sprint, teams maintain an open
line of communication with the project partner to make sure that
any questions can be answered promptly. At the end of the sprint,
each team demonstrates their progress to their project partner dur-
ing a sprint review when they may accept or reject some or all of

the newly developed functionality. Each team also participates in
an in-class self-reflection during the sprint retrospectives when
they can inspect the results they accomplished, discuss the lessons
learned during the sprint, and adapt both the product backlog (to
better reflect any possible changes in the project requirements) and
the team’s workflow (to make sure that the team does more of what
works for them and less of what doesn’t).

The transition phase takes place during the last week of the
semester. It focuses on knowledge transfer and typically includes
the final project demonstration to the project partner and the entire
class. There are several possibilities at this point: a) the project
continues next semester with the same team(s) (typical for teams
in the SE course that will be in the SP course next semester); b)
the project continues next semester with at least one new team
(same scenario as above, but with an additional team from the next
semester’s SE course; or when there’s no overlap in teams); or c)
the project is completed and there are no teams actively involved
in it (aside from routine maintenance).

Regardless of the project state, to facilitate the knowledge trans-
fer, teams typically prepare a set of user and deployment documents
for the project partner and the team(s) that may continue working
on the same project. Project continuity is enabled by several factors:
a) team staggering so that there is an overlap between a team con-
tinuing with the project and a new team, b) extensive knowledge
transfer documentation including configuration and build docu-
ments, and c) near-peer mentoring where a recent graduate who
worked on the same project mentors the next team(s).

Throughout their work on the projects, student teams are typi-
cally required to produce a range of deliverables in the form of re-
ports, presentations, source code commits, project demonstrations,
meeting notes, etc. Each of these deliverables is an opportunity for
formative assessment, while those produced towards the end of
the project and especially at the project transition phase are very
useful for summative assessment of student learning.

2 ACKNOWLEDGEMENTS
This work was supported in part by NSF awards 2315322 and
2315323.

REFERENCES
[1] Christopher N. Bull and Jon Whittle. 2014. Supporting Reflective Practice in

Software Engineering Education through a Studio-Based Approach. IEEE Software
31, 4 (2014), 44–50. https://doi.org/10.1109/MS.2014.52

[2] Heidi J. C. Ellis, Gregory W. Hislop, Stoney Jackson, and Lori Postner. 2015. Team
Project Experiences in Humanitarian Free and Open Source Software (HFOSS).
ACM Trans. Comput. Educ. 15, 4, Article 18 (dec 2015), 23 pages. https://doi.org/
10.1145/2684812

[3] Phillip A. Laplante. 2006. An Agile, Graduate, Software Studio Course. IEEE
Transactions on Education 49, 4 (2006), 417–419. https://doi.org/10.1109/TE.2006.
879790

[4] David Root, Mel Rosso-Llopart, and Gil Taran. 2008. Exporting Studio: Critical
Issues to Successfully Adopt the Software Studio Concept. In 2008 21st Conference
on Software Engineering Education and Training. 41–48. https://doi.org/10.1109/
CSEET.2008.21

[5] Daniela Rosca. 2018. Acquiring Professional Software Engineering Skills through
Studio-based Learning. In 2018 17th International Conference on Information Tech-
nology Based Higher Education and Training (ITHET). 1–6. https://doi.org/10.1109/
ITHET.2018.8424773

[6] Robbie Simpson and Tim Storer. 2017. Experimenting with Realism in Software
Engineering Team Projects: An Experience Report. In 2017 IEEE 30th Conference
on Software Engineering Education and Training (CSEE&T). 87–96. https://doi.org/
10.1109/CSEET.2017.23

https://doi.org/10.1109/MS.2014.52
https://doi.org/10.1145/2684812
https://doi.org/10.1145/2684812
https://doi.org/10.1109/TE.2006.879790
https://doi.org/10.1109/TE.2006.879790
https://doi.org/10.1109/CSEET.2008.21
https://doi.org/10.1109/CSEET.2008.21
https://doi.org/10.1109/ITHET.2018.8424773
https://doi.org/10.1109/ITHET.2018.8424773
https://doi.org/10.1109/CSEET.2017.23
https://doi.org/10.1109/CSEET.2017.23

	Abstract
	1 The SPSG Framework
	2 Acknowledgements
	References

