Check for
Updates

A Near-Peer Mentorship Framework for Software Projects

Stan Kurkovsky
Central Connecticut State University
New Britain, CT, USA
kurkovsky@ccsu.edu

Abstract

The work describes a model for graduate-undergraduate mentor-
ship that enhances the learning of both groups, while also enabling
more opportunities for students to get real-world experience in a
way that benefits the university’s greater community.

ACM Reference Format:

Stan Kurkovsky and Chad A. Williams. 2025. A Near-Peer Mentorship
Framework for Software Projects. In Proceedings of the 30th ACM Conference
on Innovation and Technology in Computer Science Education V. 2 (ITiCSE
2025), June 27-July 2, 2025, Nijmegen, Netherlands. ACM, New York, NY,
USA, 2 pages. https://doi.org/10.1145/3724389.3731275

1 Introduction

One of the most pressing needs in the tech industry today is for
graduates who not only possess advanced technical knowledge but
can also effectively apply their skills in real-world environments.
Our Computer Science (CS) program has successfully addressed
this need by providing students with hands-on experiences through
partnerships with industry and non-profit organizations. These col-
laborations have given our graduates a competitive edge in the
job market. However, as enrollment in our CS programs contin-
ues to grow, so does the challenge of scaling real-world project
opportunities to meet student demand. This challenge led us to de-
velop a structured approach to expand experiential learning while
maintaining its effectiveness.

Since 2014, our Software Engineering Studio has provided more
than 600 students with hands-on software development experience,
including collaborations with non-profits and community organi-
zations. These service-learning opportunities, integrated into the
capstone sequence of our BS CS program (Software Engineering
and Senior Project), allow students to apply their skills in real-world
contexts while strengthening essential professional competencies
such as teamwork, time management, and communication.

Through this experience, we established a structured framework
that facilitates engagement between student teams and project
partners, maps project stages to specific student deliverables, and
enables both formative and summative assessment of student work
[2, 3]. This framework, designed for scalability and consistency
across semesters, incorporates agile software engineering practices
commonly used in industry. These include using product and sprint
backlogs, sprint reviews and retrospectives, and velocity tracking

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ITiCSE 2025, Nijmegen, Netherlands

© 2025 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-XXXX-X/2018/06

https://doi.org/10.1145/3724389.3731275

739

Chad A. Williams
Central Connecticut State University
New Britain, CT, USA
cwilliams@ccsu.edu

to monitor project progress. Currently, this approach is used in two
courses, involving approximately 50 students per semester.

2 Objectives

The near-peer mentorship [1] framework presented here addresses
three key areas for improving our existing approach:

Bridging the transition to real-world projects: Undergraduate teams
work directly with project partners, gaining firsthand experience
with the challenges and uncertainties of large-scale real-world
projects. While this experience is invaluable, the adjustment can be
overwhelming. At the same time, research shows that peer or near-
peer mentoring in professional contexts can significantly enhance
student learning by complementing traditional coursework.

Providing technical leadership for non-profit projects: In corpo-
rate collaborations, experienced professionals often serve as Scrum
Masters, guiding student teams by coordinating tasks, maintaining
project timelines, and ensuring timely communication. However,
non-profits typically lack the technical expertise to fill this role, as
they rely on our students for their specialized skills. While these
projects offer valuable learning experiences, undergraduate teams
often struggle without structured technical leadership to coordinate
their efforts and manage project risks effectively.

Developing technical leadership in MS students: Just as industry
seeks graduates with real-world experience, it is equally important
for students in our MS Software Engineering program to gain hands-
on technical leadership experience. While leadership concepts can
be taught in the classroom, MS students need opportunities to
practice these skills with less-experienced developers. This helps
them become more successful after graduation when many MS
students will lead teams of junior developers, which requires them
to have both technical leadership and the ability to mentor their
team members in professional practices.

To address these challenges, we enhanced our software engi-
neering project framework by integrating graduate students from
our MS Software Engineering program as Scrum Masters for un-
dergraduate teams. Many of these graduate students are already
working in industry, making them well-suited for this role. Addi-
tionally, as many are alumni of our own undergraduate CS program,
they are uniquely positioned to serve as near-peer mentors. While
these MS students may have industry experience, they often enroll
in our program to accelerate their technical leadership develop-
ment. This near-peer mentorship framework benefits both groups:
undergraduates receive the structured guidance needed for more
complex projects, while graduate students gain hands-on leadership
experience in a controlled yet realistic environment.

3 Methodology

In the Fall 2023 semester, we developed a comprehensive set of
mentoring and professional guidelines for student scrum masters.


https://doi.org/10.1145/3724389.3731275
https://doi.org/10.1145/3724389.3731275
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3724389.3731275&domain=pdf&date_stamp=2025-06-17

ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands

The scrum guide [4] served as an excellent starting point. How-
ever, our guidelines took into account the very limited project
management experience of our graduate students, the constraints
and specifics imposed by the academic setup of the project (timing
constraints, limited experience of student developers, meeting ca-
dence, etc.), and the lack of technical background of many of our
community-based project partners. We then selected a cohort of
four current graduate students with the right background to serve
as scrum masters. Preference was given to students with at least 6
months of industrial experience, and/or experience participating
in a semester-long course-based project, ideally CS 410 or CS 498
from our undergraduate program. We asked each student to serve
for two consecutive semesters in this role, for which they were
rewarded with academic credits.

4 Near-Peer Mentorship Framework Features

Cohort continuity: Every semester we have been adding 3-4 new
scrum masters to the cohort so that there is always a mix of senior
and junior scrum masters in the cohort. This approach played a very
significant role in knowledge transfer between the scrum masters.

The body of knowledge: After the end of the first semester, we
asked scrum masters to anonymously contribute to a shared docu-
ment organized as a collection of prompts that included advice for
new scrum masters about supporting student teams with technical
challenges, best practices for scheduling and running team meet-
ings, encouraging team engagement and timely communication,
and handling team conflicts and non-contributors. This document
is being revised every semester to reflect the best practices of the
framework.

Working with teams: Each scrum master met with their team on
a weekly basis for a 30-minute "weekly scrum" which mimics a
daily standup, but spans an entire week worth of the team’s work.
Student teams reported that the most important questions that the
scrum masters helped them answer and understand included the
definition and the specifics of the scrum master’s role and the value
that they can provide to the team, the best practices for writing user
stories, as well as useful practices for encouraging project client
interaction.

Continuous improvement: At the end of every semester, we con-
ducted a "course retrospective"” where the scrum master cohort made
many observations and suggestions (many of them anonymous) to
help improve the mentorship framework. This included actionable
guidance for returning scrum masters (creating a welcoming atmo-
sphere for the team by relating to their own experience, and having
a solid understanding of scrum and agile practices), improving team
meetings (using standardized technology for backlog management,
discussing team velocity trends, and concluding with actionable
takeaways), professional growth as a scrum master (building lead-
ership and communication skills and reinforcing the importance of
clear direction and team alignment), and proposed enhancements
to the mentorship framework (e.g. providing basic git training and
emphasizing the importance of all scrum ceremonies).

Starting in the Spring 2024 semester, we assigned each scrum
master to one team of undergraduate students working on external
projects embedded in CS 410 Software Engineering. All scrum mas-
ters met with the course instructor on a weekly basis, which helped

740

Stan Kurkovsky and Chad A. Williams

gather regular feedback about what aspects of their work were
successful and what areas needed improvement. These meetings
also helped the cohort of scrum masters stay in sync with each
other and with the course content. An evolving cohort of graduate
scrum masters has been working with student teams ever since.

5 Student feedback

The feedback we received from students was overwhelmingly posi-
tive. While recognizing that scrum masters could not provide any
technical help, students appreciated the support they received:
Our scrum master kept us on track during the sprint as he
required updates on what progress we made and our plan
moving forward. If it seemed we were falling behind, he
suggested how we may move forward. Our scrum master
also assisted in sprint planning. Before each sprint began,
we worked with our scrum master to decide which backlog
tasks were most important for the sprint. He assisted in de-
termining how to break down the backlog tasks into smaller
items.
Graduate scrum masters were also pleased with the outcomes of
this experience:
Acting as a scrum master helped me improve some lead-
ership and communication skills. Providing direction for a
development team taught me how critical it is to convey clear
and concise information for a successful project. Specifically,
ensuring each team member was on the same page regarding
their responsibilities while facilitating each meeting helped
me improve communication with the team.
When asked, "What aspects do you like the most about being
a student scrum master?" A graduate student responded "Expos-
ing students to the same sort of Scrum-based team workflow that
is all so common when working as a full-stack developer in the
professional world"

6 Summary

This mentorship framework is unique in that it integrates graduate-
undergraduate near-peer mentoring and software engineering lead-
ership practice into the program curriculum, which provides tangi-
ble benefits to both graduate and undergraduate students, as well
as external project partners.

Acknowledgments

This work was supported in part by NSF awards DUE-2029287 and
DUE-2315322.

References

[1] Margery K Anderson, R Jerome Anderson, Laura S Tenenbaum, Emily D Kuehn,
Holly KM Brown, Swati B Ramadorai, and Debra L Yourick. 2019. The benefits of
a near-peer mentoring experience on STEM persistence in education and careers:
A 2004-2015 study. Journal of STEM Outreach 2, 1 (2019), nl.

SPSG Hub. 2025. Scaffolded Projects for the Social Good. https://spsg-hub.github.io/
Stan Kurkovsky, Chad A. Williams, Mikey Goldweber, and Nathan Sommer. 2024.
External Projects and Partners: Addressing Challenges and Minimizing Risks from
the Outset. In Proceedings of the 2024 on Innovation and Technology in Computer
Science Education V. 1 (Milan, Italy) (ITiCSE 2024). Association for Computing
Machinery, New York, NY, USA, 555-561. doi:10.1145/3649217.3653593

Ken Schwaber and Jeff Sutherland. 2011. The scrum guide. Scrum Alliance 21, 1
(2011), 1-38.


https://spsg-hub.github.io/
https://doi.org/10.1145/3649217.3653593

	Abstract
	1 Introduction
	2 Objectives
	3 Methodology
	4 Near-Peer Mentorship Framework Features
	5 Student feedback
	6 Summary
	Acknowledgments
	References



