Check for
Updates

Community-Engaged Software Projects: A Lightweight Approach

Mikey Goldweber
mikeyg@denison.edu
Denison University
Granville, OH, USA

Chad A. Williams
cwilliams@ccsu.edu
Central Connecticut State University
New Britain, CT, USA

Abstract

We describe a lightweight approach to community-engaged service
learning, structured as a semester-long hackathon where students
explore socially relevant problems through problem definition, eth-
ical analysis, and rapid prototyping. By eliminating the logistical
challenges of traditional service-learning projects, this approach
provides a scalable way to integrate Computing for the Social Good
into the curriculum while retaining key educational benefits.

CCS Concepts

« Social and professional topics — Software engineering edu-
cation; Computer science education; Software engineering
education.

Keywords
software engineering, capstone projects, ethics

ACM Reference Format:

Mikey Goldweber, Stan Kurkovsky, Chad A. Williams, and Nathan Sommer.
2025. Community-Engaged Software Projects: A Lightweight Approach. In
Proceedings of the 30th ACM Conference on Innovation and Technology in
Computer Science Education V. 2 (ITiCSE 2025), June 27-July 2, 2025, Nijmegen,
Netherlands. ACM, New York, NY, USA, 2 pages. https://doi.org/10.1145/
3724389.3731262

1 Introduction

The gold standard for the software engineering sequence and/or
capstone course is community-engaged service learning where stu-
dents, working in teams following an agile methodology, construct
a software artifact that advances the mission of a not-for-profit
organization. In the taxonomy of projects that fall under the label
of Computing for the Social Good (CSG) [3, 4], such experiences
are considered to be level 4, the highest level. However, these can
be challenging undertakings since one must deal with thorny is-
sues such as partner identification, project scoping, skills matching,
project hosting, and long-term maintenance; to say nothing of non-
traditional student assessment such an experience requires. We

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

ITiCSE 2025, Nijmegen, Netherlands

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1569-3/2025/06

https://doi.org/10.1145/3724389.3731262

753

Stan Kurkovsky
kurkovsky@ccsu.edu
Central Connecticut State University
New Britain, CT, USA

Nathan Sommer
sommernl@xavier.edu
Xavier University
Cincinnati, OH, USA

refer to such experiences as SPSG-projects after a time-tested frame-
work, Scaffolded Projects for Social Good (SPSG) [5, 6], designed
to aid adopters in overcoming the challenges these high-impact
educational experiences present. This framework provides a highly-
strictured approach to embed authentic service-learning projects
into software development and similar courses, aligning them with
course learning outcomes, and offering multiple avenues for forma-
tive and summative assessment of student work. In this techniques
short paper, we describe a lightweight approach to achieving many
of the outcomes from an SPSG-project that sidesteps the thorniest
challenges such projects entail.

2 The Lightweight Approach

In a CSG level 4 project, students solve a real-world problem brought
to them by an external (non-profit) stakeholder. The final deliverable
addresses a problem with real-world benefits. The motivating idea
behind this lightweight approach is to design a course to provide a
CSG level 3 experience: solve a real-world problem as an exercise.

The basic idea is to run one’s course as a one-term hackathon

that has six phases. Similarly, this course has also been described
as an experience in open-ended problem solving [7].
Theme Selection and Partner Identification: This phase hap-
pens before the term begins. The instructor selects a socially rel-
evant broad topic of interest. The topic can be of local relevance
or broader. Examples of this include: the opioid epidemic, food in-
security, aquifer depletion, homelessness, waterway pollution, etc.
Based on the topic, the goal is to identify a local nonprofit working
in the selected space willing to partner for the term.

This form of community engagement is one-directional. The
community partner becomes a partner on the mission of educating
students, but will not be receiving any software in return. As we
detail below, given the light commitment on the part of the com-
munity partner, our experience has shown that most such partners
are happy to participate.

This part is similar to an SPSG-project in that partner iden-
tification occurs prior to the term. However, there is no project
scoping/negotiation, nor is there any need to manage partner ex-
pectations. Partners get to expose a new audience to their activities
and to participate in students’ growth as problem solvers learning
how to apply technical skills to socially relevant issues.

Topic Education: Once the term begins, the first couple of weeks
are spent doing a deep dive on the selected topic. In addition to
reading articles, the class visits the community partner and/or the
partner visits the class. This is part of the education phase; the role


https://doi.org/10.1145/3724389.3731262
https://doi.org/10.1145/3724389.3731262
https://doi.org/10.1145/3724389.3731262
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3724389.3731262&domain=pdf&date_stamp=2025-06-17

ITiCSE 2025, June 27-July 2, 2025, Nijmegen, Netherlands

of the partner is to help educate the students on the various aspects
of the chosen topic and what their role is in addressing the topic.

Topic education does not generally happen with SPSG-projects.

With an SPSG-project students begin the term with an introduction
to their community partner/client and an already agreed-upon
project description.
Ideation: After students get up to speed on the problem domain,
the next week or so is spent on project ideation. After an initial
time to ideate, students are put into small groups. Each student
pitches their idea to their group, getting feedback to refine their
idea. In the next class session, students are put into different groups
to repeat the process, which gives them an opportunity to refine
their ideas with a different set of peers.

The ideation phase concludes with both a written report and
an oral presentation. A key aspect is that in addition to a detailed
description of their proposed software artifact, students must also
present an ethical analysis of their approach. This includes a dis-
cussion of possible unforeseen consequences, potential negatively
affected stakeholders, etc. There are several such frameworks one
can adopt that guide students through this [1, 2, 9]. Finally, one
might elect to hold the oral presentations in a forum open to both
non-enrolled students, other faculty, and one’s community part-
ner(s).

Clearly, this phase has no counterpart with SPSG-projects where
students are typically assigned to an already agreed upon project.
Project Selections and Team Creation: With software engineer-
ing project team size typically around six, the number of projects
that will be selected is a function of the class size. As with hackathons,
the winning projects are selected via a voting process. This can be
restricted to class members only, or open to all who attend the oral
presentation session, including the community partner(s).

Team formation comes after project selection. While instructors

typically perform the team creation step in SPSG-projects, this
lightweight version allows students to self-select onto teams using
a preference voting scheme.
Software Development: This phase is the most similar to its SPSG-
project counterpart. Students, working in small teams, using an
agile methodology develop a software artifact. Unlike with a SPSG-
project the final product is not production-ready software but more
of a prototype or software that demonstrates a proof of concept.

The community partner’s role is not that of a client, but a re-

source that student teams can periodically consult with - typically
via prearranged online meetings. While the student - community
partner relationship is not as formal as with an SPSG-project, it
is nonetheless a worthwhile experience for students to interact
face-to-face with people outside academia as part of a software
development exercise.
Showcase: Typical of all such project-based courses is the public
end-of-semester showcase event. Each team presents and demon-
strates the artifact they created. Special attention is given to how
each team addressed the ethical issues that were raised during the
ideation phase.

Unlike real hackathons, there are no judges nor voting to select
a winning project. However, after one showcase event, two teams
received a small grant from a community partner to continue their
project development over the subsequent summer.

754

Mikey Goldweber, Stan Kurkovsky, Chad A. Williams, and Nathan Sommer

3 Conclusion

This lightweight approach to community-engaged learning has
some serious drawbacks when compared to SPSG-projects. First
and foremost, SPSG-projects provide students the opportunity to
hone their professional (soft) skills in an authentic setting. Face-
to-face or real-time online interactions with an authentic project
partner expecting an actual deliverable is a key learning outcome
that our lightweight approach does not provide.

However, our lightweight approach has some significant advan-
tages as well. Students involved in an SPSG-project spend all their
time in the software development phase tackling technical issues.
In a lightweight course, students not only see the social relevance
of computing by working on a CSG project, they get to conceive
of computing solutions to important problems. Concomitant to
students practicing how computing can help solve important so-
cial problems, they also practice performing ethical analyses of
proposed software solutions when it is most important; at the con-
ception phase. For the most part, students are told what to program
throughout their undergraduate career. There is great pedagogic
value in students developing and publicly presenting their own
ideas of what to create to address socially relevant issues [8].

While implementing a CSG level 4 SPSG-project offers many
advantages, it may often require additional faculty effort and a
certain degree of institutional support. Therefore, it is important
not to underestimate the very real value of the lower bar required
to undertake a CSG level 3 experience using a lightweight approach
described here.

Acknowledgments

This work was supported in part by NSF awards DUE-2315322 and
DUE-2315323.

References

[1] Fatma Basak Aydemir and Fabiano Dalpiaz. 2018. A roadmap for ethics-aware soft-
ware engineering. In Proceedings of the International Workshop on Software Fairness
(Gothenburg, Sweden) (FairWare ’18). Association for Computing Machinery, New
York, NY, USA, 15-21. doi:10.1145/3194770.3194778

Markkula Center. 2025. Markkukla Center for Applied Ethics. https://www.scu.
edu/ethics/

Heidi J. C. Ellis, Gregory W. Hislop, Mikey Goldweber, Samuel Rebelsky, Janice
Pearce, Patti Ordonez, Marcelo Pias, and Neil Gordon. 2024. Computing for Social
Good in Education. ACM Inroads 15, 4 (Nov. 2024), 47-57. d0i:10.1145/3699719
Mikey Goldweber, Lisa Kaczmarczyk, and Richard Blumenthal. 2019. Computing
for the social good in education. ACM Inroads 10, 4 (Nov. 2019), 24-29. doi:10.
1145/3368206

SPSG Hub. 2025. Scaffolded Projects for the Social Good. https://spsg-hub.github.io/
Stan Kurkovsky, Chad A. Williams, Mikey Goldweber, and Nathan Sommer. 2024.
External Projects and Partners: Addressing Challenges and Minimizing Risks from
the Outset. In Proceedings of the 2024 on Innovation and Technology in Computer
Science Education V. 1 (Milan, Italy) (ITiCSE 2024). Association for Computing
Machinery, New York, NY, USA, 555-561. doi:10.1145/3649217.3653593

Aletta Nylén, Mats Daniels, Ville Isométtonen, and Roger McDermott. 2017. Open-
ended projects opened up—aspects of openness. In 2017 IEEE Frontiers in Education
Conference (FIE). IEEE, 1-7.

Jacqueline Whalley, Michael Goldweber, and Harley Ogier. 2017. Student val-
ues and interests in capstone project selection. In Proceedings of the Nine-
teenth Australasian Computing Education Conference (Geelong, VIC, Australia)
(ACE °17). Association for Computing Machinery, New York, NY, USA, 90-94.
doi:10.1145/3013499.3013508

David Wright. 2011. A framework for the ethical impact assessment of information
technology. Ethics and information technology 13 (2011), 199-226.

=

=

=


https://doi.org/10.1145/3194770.3194778
https://www.scu.edu/ethics/
https://www.scu.edu/ethics/
https://doi.org/10.1145/3699719
https://doi.org/10.1145/3368206
https://doi.org/10.1145/3368206
https://spsg-hub.github.io/
https://doi.org/10.1145/3649217.3653593
https://doi.org/10.1145/3013499.3013508

	Abstract
	1 Introduction
	2 The Lightweight Approach
	3 Conclusion
	Acknowledgments
	References



